机器学习入门教程

【附件】最小二乘法求解公式及推导

作者 : 老饼 发表日期 : 2022-11-05 15:37:31 更新日期 : 2025-03-30 13:36:53
本站原创文章,转载请说明来自《老饼讲解-机器学习》www.bbbdata.com



最小二乘法是线性回归的求解方法,它可以使最小二乘误差最小

本文介绍最小二乘法的原理,包括最小二乘法的求解公式与详细推导过程

通过本文,可以了解最小二乘法是如何求解线性回归的,以及它的公式推导




   01. 最小二乘法-问题背景  




本节描述最小二乘问题的背景问题和它的求解公式




     最小二乘法-原始问题      


最小二乘问题
 已采集 x 和 y 的m个样本
矩阵表示个样本,用维列向量 表示个样本
 最小二乘的数据表示 
 即X和Y的每一行代表一个样本 
 
假设用来拟合 y ,则所有样本的预测误差平方和为:
 
现在我们要求解使E最小的w
最小二乘问题-数学表述
上述问题整理成一个更纯粹的数学问题,则为:
现有X,Y,求一w,
使 最小
该问题称为最小二乘问题





    最小二乘问题的求解公式  


上述最小二乘法问题的求解公式为:
  
 如下图所示:
 最小二乘法求解公式







   02. 最小二乘法通用表述  




本节描述最小二乘法问题数学通用表述,这个表述更为常见通用




   最小二乘法通用表述   


上面的X,Y是我们采集到的数据,w是我们要求的解
事实上,更多时候我们喜欢用以下形式来描述该问题
问题表述

已知A,b,
  其中A为矩阵,b为的列向量
求一  使的误差平方和最小:
 
备注:该问题也可以理解为,求一
使  最佳迫近
求解公式
 
对应的求解公式如下
 







   03. 最小二乘法求解公式推导   




本节讲述微分法推导最小二乘法的求解公式的过程




     最小二乘法求解公式-推导思路     


这里我们使用最小二乘法问题的通用表述进行推导求解公式
即求一最小
推导思路很简单,
假设 ,
要使  最小,
只要令  分别对  的偏导为 0, 
即有

求解上面的方程组即可求得令  最小的解





    最小二乘法求解公式-推导过程    


最小二乘法求解公式的详细推导过程如下:
最小二乘法的误差函数为:                            

 

        先求单个x分量在E中的偏导,如下:                            

                   

  则对x的总偏导为:                                    
                             
 
令偏导为0,则可求得:                                
        
                即有上述最小二乘法求解公式:  
            
 
     关于最小二乘法求解公式的另一种推导方法    
最小二乘法求解公式还可以利用高等代数的方法进行推导
利用高等代数的方法进行推导最小二乘法的求解公式会更加简洁、直接、直观,
但由于依赖高等代数等相关知识,本文不再介绍,如有兴趣,可查看文章《最小二乘法






以上就是最小二乘法的求解公式及公式的推导过程了~









 End 



联系老饼